If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-x+4x^2-7x-9=0
We add all the numbers together, and all the variables
5x^2-8x-9=0
a = 5; b = -8; c = -9;
Δ = b2-4ac
Δ = -82-4·5·(-9)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{61}}{2*5}=\frac{8-2\sqrt{61}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{61}}{2*5}=\frac{8+2\sqrt{61}}{10} $
| 2^x2-2=16(2^5x) | | X^3=27-2x | | 4^x=2^3x | | 2x500=3x | | 5^x-1=0.2 | | 8x²+6x=0 | | 36b^2+12b-1=0 | | 6=3(4x+5)+3 | | 1/5x-6=4 | | 22−5z=−8 | | 3x+6-5x+2=0 | | x-9=11,2 | | 2^(2)−3x−5=0 | | 1.9=r.3 | | 2x+x+3x=140 | | 5x=3x-25+13 | | x+5°+4x-55°=7x-130° | | 4n-3=3n+3 | | 12-15=12+n | | 2x+1/2-5=10 | | -7-(-4)=4+n | | 5-12=5+n | | 90/54=n=3 | | 16y^-8.2y=4y | | 90/54=n/3 | | 75/120=n/8 | | 16y.y-8.2y=4y | | (3x-15)/2x+1)=0 | | x^2-12^x+24=0 | | -4.5-5.5(1+3b)=26.5 | | 14*0,67^x=68 | | 1.25x^2-5x+5=0 |